Saturday, April 20, 2024
Waste Management

Wastewater Treatment Options

The required treatment is determined by the influent characteristics, the effluent requirements, and the treatment processes that produce an acceptable effluent.

Influent characteristics are determined by laboratory testing of samples from the waste stream or from a similar waste stream, or are predicted on the basis of standard waste streams.

Effluent quality requirements are set by Federal, Interstate, State, and Local regulatory agencies. Treatment processes are selected according to influent-effluent constraints and technical and economic considerations.

Treating Biodegradable Wastewaters

Biodegradable wastewaters can come from domestic, institutional, commercial outfits and also from industries (especially industries dealing in food, beverages, including beer, starch, flavouring, soft drinks, flour and grain milling, meat/poultry/fish products, fruit juices, cocoa/chocolate/confectionery, sugar distillery, etc).

All things being equal, these wastewaters can be treated by biological means whereby action of microorganisms is used under suitably controlled conditions to break down the waste. Microorganisms can break down wastewater solids under aerobic or anaerobic conditions. Aerobic systems, biodegradable wastewater solids are converted, in the presence of adequate oxygen into bacterial cells:

WastewaterSolids+Oxygenbacteria Oxidizedwastes+NewBacteriaCells

Biological systems available for treating biodegradable wastewaters, from the crudest to the most modern may be listed as follows:

Latrine (individual household use)

Bushrine (pronounced as lat-rine)

Septic tank and soak-away system

Trickling filters

Activated sludge

Lagoons

Most of these have been discussed earlier. Please try to read the unit again if you have forgotten them.

Read Also : Wastewater Treatment and Guideline Standards

Treating Non-Biodegradable Wastewaters

Wastes that are non-biodegradable or that are outright toxic may not be amenable to treatment by any of the biological system earlier described. Examples of such wastewaters are those from textiles, lead – acid battery manufacturing, paint, printing, etc.

Each non-biodegradable wastewater is usually subjected to laboratory analysis and reliability studies before a treatment system is developed for it. Treatment of such wastes may involve a combination of the following physiochemical system:

pH adjustment

Aeration

Chlorination (bleaching action)

Coagulation/flocculation (alum with mixing action)

Sedimentation

Centrifugation

Flotation

Filtration (using activated carbon and / or sand over gravel).

Table 11 illustrates the applicable processes and the possible performance of most of the available techniques. All the identified methods will be used for guidance in selecting a process chain of treatment units, which applies directly to the selection of treatment processes.

Generally, wastewater techniques are classified under the following sub

– Headings in the table as follows (see also Figure 12):

Preliminary Treatment

Preliminary treatment is defined as any physical or chemical process at the wastewater treatment plant that precedes primary treatment. Its function is mainly to protect subsequent treatment units and to minimize operational problems.

Read Also : Issues in Wastewater Reuse and Recycling, and the Future of Water Reuse

Pre-treatment at the source to render a wastewater acceptable at the domestic wastewater treatment facility is not included.

Primary Treatment

Primary treatment is defined as physical or, at times, chemical treatment for the removal of settleable and floatable materials.

Secondary Treatment

Secondary wastewater treatment is defined as processes which use biological and, at times, chemical treatment to accomplish substantial removal of dissolved organics and colloidal materials.

Land treatment can be classified as secondary treatment only for isolated locations with restricted access and when limited to crops which are not for direct human consumption.

Advanced Wastewater Treatment

Advanced wastewater treatment is defined as that required to achieve pollutant reductions by methods other than those used in conventional treatment (sedimentation, activated sludge, trickling filter, etc.).

Advanced treatment employs a number of different unit operations, including ponds, post-aeration, micro straining, filtration, carbon adsorption, membrane solids separation, and specific treatment processes such as phosphorus and nitrogen removal.

Advanced wastewater treatment is capable of very high effectiveness and is used when necessary to meet strict effluent standards.

Organics and suspended solids removal of over 90 percent is obtainable using various combinations of conventional and advanced wastewater treatment processes.

Phosphorus levels of less than 1 milligram per liter and total nitrogen levels of 5.0 milligrams per liter or less can also be reached through advanced treatment.

Table 11: Wastewater Treatment Methods, their Applications and Efficiency

Treatment ProcessApplicationAdvantages and CapabilitiesDisadvantages and Limitations
Preliminary
a. EqualizationWastewaters with high variabilityDampers waste variation Reduces chemical requirements Dampens peak flows, reduces treatment plant sitesNeed large areas Possible septicity, requiring mixing and/or aeration equipment
b. NeutralisationWastewaters with extreme pH valuesProvides the proper conditions for biological, physical and chemical treatmentMay generate solids
c. Temperature adjustmentWaste streams with extreme temperaturesProvides the proper conditions for biological treatmentHigh initial equipment costs
d. Nutrient additionNutrient deficient wastesOptimizes biological treatmentPossible septicity, requiring mixing and/ or aeration equipment
e. ScreeningWaste streams containing large solids (wool, rags, etc)Prevents pump and pipe clogging Reduces subsequent solids handlingMaintenance required to prevent screen plugging, ineffective for sticky solids
f. Grit removalWastewaters containing significant amounts of large, heavy solidsLowers maintenance costs, erosionSolids to be disposed of are sometimes offensive
PrimaryTreatment
a. SedimentationWastewaters containing settle able suspended solidsReduces inorganic and organic solid loadings to subsequent biological units By far the least expensive and most common method of solid – liquid separation Suitable for treatment of wide variety of wastes Requires a simpler equipment and operation Demonstrated reliability as a treatment processPossible septicity and odours Adversely affected by variations in the nature of the waste Moderately large area requirement
b. Dissolved-air floatationWastewaters containing oils, fats, suspended solids and other floatable matter. Can be used for either clarification or thickeningRemoves oils, greases and suspended solids Less tank areas than for a sedimentation tank Higher concentration of solids than for sedimentation Satisfies immediate oxygen demand. Maintenance aerobic conditionsHigh initial equipment costs Sophisticated equipment and instrumentation High power and maintenance cost
b. Aerated Pond (with secondary sedimentation)Biologically treatable organic wastesFlexible – can adapt to minor pH, organic and temperature changes Inexpensive construction Requires minimum attention Moderate effluent (80 – 90% BOD Removal)Dispersed solids in effluent Affected by seasonal temperature variations Operating problems Moderate power costs Large area required No colour reduction
c. Aerobic Anaerobic PondsBiologically treatable organic wastesLow construction costs Non–skilled operation Moderate quality (80–95% BOD Removal) Removes some nutrients from wastewatersLarge land are a required Algae in effluent Possible septicity and odors Weed growth, mosquito and insect problems
d. Trickling filterBiologically treatable organic wastesModerate quality effluent (80 – 90% BOD Removal) Moderate operating costs (lower than activated sludge and higher than oxidation pond) Good resistance to shock loadsClogging of distributors or beds Snail, mosquito and insect problems
e. Chemical oxidationLow flow, high concentration wastes of known and consistent waste composition, or removal of refractory compoundsDisinfects effluent Aids grease removal Removes taste and odour Removes organics without producing a residual waste concentrateChemical costs High initial equipment costs Skilled operations Requires handling of hazardous chemicals
mixing flocculation and clarificationhigh in dissolved solids, colloids, metals, or perceptible inorganic and waste containing emulsified oils.ions, nutrients, colloids, dissolved salts Recovery of valuable materials Provides proper conditions for biological treatmentequipment and instrumentation Residual salts in effluent Produces considerable sludge
g. Gravity filtrationWastewaters with organic or inorganic suspended solids, emulsions, colloidsBreaks emulsions Removes suspended solidsClogging Frequent backwashing High pressure costs
h. Pressure filtrationWastewater high in suspended solids (i.e. sludge, organic solids)High solids removal (190 – 95%)High pressure coasts Clogging High pressure drop (power costs)
i. Dissolved air floatation with chemicalsWastewaters containing oils, fats, colloids and chemically coalesced materialsProduces high degree of treatment Removes oils, greasesHigh initial equipment costs High operation cost Sophisticated instrumentation
j. Anaerobic contactWastewaters with high BOD and/or high temperatureMethane recovery Small area required Volatile solids destructionHeat required Effluent in reduced chemical form requires further treatment Requires skilled operation
Advanced Wastewater Treatment


odour producing compoundscompounds Reduces colourNo inorganic removal Wastes must be solid free to prevent c logging Air pollution potential when regenerating activated carbon Limited throughput

b. Micro straining filtrationTertiary treatmentUp to 89% of suspended solids removed Can produce final effluent of solids less than 10mg/LVery sensitive to solids overloading Requires automatic controls, absorbent techniques

c. Land treatmentBiologically treatable wastes with low to moderate amounts of toxic substancesInexpensive Minimum operator attention, minimum sludge Waste conservation Crop production Very high quality effluent and/or in dischargeLarge land area required Possible contamination of potable aquifers Freezing in winter Odours in summer under some conditions, usually of minor concern

d. Subsurface disposal (e.g. deep well injection)Solids free, concentrated wastewatersDisposal of in organics and organics Ultimate disposal of toxic or odorous materialSubsurface clogging Groundwater pollution High maintenance and operation costs Limited aquifer life High initial costs

e. Groundwat er rechargeTreated wastewatersReduces bacteria concentration Conserves water resources Prevents salt water intrusion into potable aquifersPossible groundwater contamination Limited to porous formation

Source: Department oftheArmyAirForce Manual and theAir Force (1988) Domestic Wastewater Treatment, Vol. 3, pages 17 –30.

Wastewater Treatment Options

Fig. 12: An Overview of a Wastewater Treatment Facility for a Municipality

WealthInWastes

Benadine Nonye is an agricultural consultant and a writer with over 12 years of professional experience in the agriculture industry. - National Diploma in Agricultural Technology - Bachelor's Degree in Agricultural Science - Master's Degree in Science Education - PhD Student in Agricultural Economics and Environmental Policy... Visit My Websites On: 1. Agric4Profits.com - Your Comprehensive Practical Agricultural Knowledge and Farmer’s Guide Website! 2. WealthinWastes.com - For Effective Environmental Management through Proper Waste Management and Recycling Practices! Join Me On: Twitter: @benadinenonye - Instagram: benadinenonye - LinkedIn: benadinenonye - YouTube: Agric4Profits TV and WealthInWastes TV - Pinterest: BenadineNonye4u - Facebook: BenadineNonye

Leave a Reply

Your email address will not be published. Required fields are marked *

error

Enjoy this post? Please spread the word :)